BRIEF COMMUNICATIONS

THE ANALYTIC REPRESENTATION OF THE PULSE

ENERGY IN THE WAKE

L. I. Skurin

UDC 532.517.4

From the equation of balance for the pulse energy we find the distribution of the average turbulent energy in the automodel region of a two-dimensional wake.

The equations of balance for the momentum and the kinetic energy of turbulence in a remote part of a two-dimensional wake in an incompressible fluid can be written as

$$
\begin{gather*}
\left.U_{1} \frac{\partial U}{\partial x_{1}}=-\frac{\partial}{\partial x_{2}} \overline{\left(v_{2}^{\prime} v_{1}^{\prime}\right.}\right) \\
U_{1} \frac{\partial E}{\partial x_{1}}=-\frac{\partial}{\partial x_{2}}\left[\overline{\left.v_{2}^{\prime} \frac{1}{2} \sum_{i=1}^{3} v_{i}^{\prime 2}+\frac{1}{\rho} \overline{v_{2}^{\prime} p^{\prime}}\right]-\overline{v_{2}^{\prime} v_{1}^{\prime}} \frac{\partial U}{\partial x_{2}}-v \sum_{i, \alpha=1}^{3} \overline{\left(\frac{\partial v_{i}^{\prime}}{\partial x_{\alpha}}\right)^{2}},}\right. \tag{1}
\end{gather*}
$$

where $E=\sum_{i=1}^{3} \overline{v_{i}^{!2}} / 2$; the bar denotes the time average.
We can express the turbulent friction in Prandtl's form:

$$
\begin{equation*}
\overline{v_{2}^{\prime} v_{1}^{\prime}}=-v_{\mathrm{T}} \frac{\partial U}{\partial x_{2}}, v_{\mathrm{T}}=\left(U_{1}-U_{0}\right) \delta \tag{2}
\end{equation*}
$$

and put, for example, as in [1]

$$
\begin{equation*}
v_{2}^{\prime} \frac{1}{2} \sum_{i=1}^{3} v_{i}^{\prime 2}+\frac{1}{\rho} \overline{v_{2}^{\prime} p^{\prime}}=-v_{\mathrm{T}} \frac{\partial E}{\partial x_{2}}, v \sum_{i, \alpha=1}^{3} \overline{\left(\frac{\partial v_{i}^{\prime}}{\partial x_{\alpha}}\right)^{2}}=c v_{\mathrm{T}} \frac{E}{\delta^{2}} \tag{3}
\end{equation*}
$$

where c is a constant to be determined experimentally. Introducing the new variables

$$
\begin{aligned}
u & =U_{1}-U, \frac{u}{u_{0}}=f(\eta), \eta=\frac{x_{2}}{\delta}, \\
\frac{u_{0}}{U_{1}} & =\psi\left(x_{1}\right), \frac{E}{E_{0}}=h(\eta), \quad \frac{E_{0}}{U_{1}^{2}}=\varphi\left(x_{1}\right)
\end{aligned}
$$

and using the integral condition in the form

$$
\begin{equation*}
\psi \delta=\frac{c_{x} d}{4} \frac{1}{\int_{0}^{\infty} f d \eta}=\text { const }, \tag{4}
\end{equation*}
$$

we find that there is similarity if

$$
\begin{gather*}
\delta^{\prime} / \psi=-\psi^{\prime} \delta / \psi^{2}=-\varphi^{\prime} \delta / 2 \varphi \psi=B=\text { const } \tag{5}\\
\psi^{2} / \varphi=D=\text { const. }
\end{gather*}
$$

Then (1) takes the form

$$
\begin{equation*}
f^{\prime \prime}+z f^{\prime}+f=0 \tag{6}
\end{equation*}
$$

A. A. Zhdanov State University, Leningrad. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 18, No. 5, pp. 916-918, May, 1970. Original article submitted May 26, 1969.

> © 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17 th Street, New York, N. Y. I0011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

Fig. 1. Experimental data from [2] (continuous curve) and computation (dotted curve).

$$
\begin{equation*}
h^{\prime \prime}+z h^{\prime}+(2-c / B) h=-D f^{\prime 2} \tag{7}
\end{equation*}
$$

where the primes denote differentiation with respect to $z=\sqrt{B} \eta$.
We know the solution of Eq. (6) with the following boundary conditions:

$$
f=1 \text { for } z=0, f \rightarrow 0 \text { as } z \rightarrow \infty
$$

to be

$$
\begin{equation*}
f=\exp \left(-z^{2} / 2\right) \tag{8}
\end{equation*}
$$

The pulse-energy profile must satisfy the boundary conditions

$$
\begin{equation*}
h=1 \text { for } z=0, h \rightarrow 0 \text { as } z \rightarrow \infty, \tag{9}
\end{equation*}
$$

and also the symmetry condition

$$
\begin{equation*}
h^{\prime}=0 \text { for } z=0 \tag{10}
\end{equation*}
$$

We can show that we can describe the experimental results completely satisfactorily by taking $c=3 B$. Then the solution of Eq. (7), taking account of (8), with the boundary conditions (9) can be written as

$$
\begin{equation*}
h=z\{(3 / 2) D \sqrt{\pi}[1-\Phi(z \sqrt{2})]-(1+2 D) \sqrt{\pi / 2}[1-\Phi(z)]\}+(1+2 D) \exp \left(-z^{2} / 2\right)-2 D \exp \left(-z^{2}\right) \tag{I1}
\end{equation*}
$$

where

$$
\Phi(x) \equiv \sqrt{2 / \pi} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
$$

It follows from this that

$$
h^{\prime}(0)=(1+2 D) \sqrt{\pi / 2}-3 D_{\sqrt{2}} \sqrt{\pi} / 2 .
$$

Using (10), we have

$$
D=\frac{\sqrt{2}}{3-2 \sqrt{2}} \approx 8.2
$$

In Fig. 1 there is a comparison between the computed and the experimental values [2]. The ordinate is, from (5), (11):

$$
\begin{equation*}
\frac{2 E}{u_{0}^{2}}=\frac{2}{D} \dot{h}=3 \sqrt{\pi} z[\Phi(z)-\Phi(z \sqrt{2})]+(2 / D+4) \exp \left(-z^{2} / 2\right)-4 \exp \left(-z^{2}\right) \tag{12}
\end{equation*}
$$

The abscissa is $\xi=x_{2} / \sqrt{d} x_{1}$, and we can find that $z=5.42 \xi$, since, by (4) and (5),

$$
\delta / \sqrt{B}=\sqrt{c_{x} \sqrt{B} d x_{1} / 2}
$$

and, by experiment [2], $\sqrt{\mathrm{B}}=1 / \mathrm{R}_{\mathrm{T}}=0.08, \mathrm{c}_{\mathrm{X}}=0.85$.
Using (8) and (12) it is easy to compute the ratio of the total intensities of the change in the average velocity and pulse velocity in the automodel region:

$$
\frac{\int_{-\infty}^{\infty} u^{2} d x_{2}}{\int_{-\infty}^{\infty} 2 E d x_{2}}=\frac{D}{2} \frac{\int_{0}^{\infty} f^{2} d \eta}{\int_{0}^{\infty} h d \eta}=2
$$

which agrees exactly with experiment (cf. [3], p. 173, Fig. 7, 1b).

NOTATION

U	is the longitudinal component of average velocity;
U_{1}	is the velocity of the undisturbed flow;
$\mathrm{v}_{\mathrm{i}}^{\prime}, \mathrm{p}^{\prime}$	are the velocity and pressure pulsations;

y is the kinematic viscosity coefficient;
$\delta \quad$ is the relative wake width;
$\rho \quad$ is the density;
d is the height of middle section of body;
$c_{\mathrm{X}} \quad$ is the drag coefficient.

Subscript

0 denotes the wave axis.

LITERATURE CITED

1. K. E. Dzhaugashtin, Magnitnaya Gidrodinamika, 4, 64 (1968).
2. O. Khintse, Turbulence [in Russian], Fizmatgiz, \bar{M} Moscow (1963).
3. A. A. Townsend, The Structure of Turbulent Flow with Transverse Shear [Russian translation], IL (1959).
